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Abstract

We propose a rigorous procedure to obtain the adjoint-based gradient representation of cost functionals for the optimal
control of discontinuous solutions of conservation laws. Hereby, it is not necessary to introduce adjoint variables for the
shock positions. Our approach is based on stability properties of the adjoint equation. We give a complete analysis for
the case of convex scalar conservation laws. The adjoint equation is a transport equation with discontinuous coefficients
and special reversible solutions must be considered to obtain the correct adjoint-based gradient formula. Reversible
solutions of the adjoint transport equation and the required stability properties are analyzed in detail.
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1 Introduction

This paper is concerned with the justification of adjoint-based derivative calculations for optimal control
problems governed by nonlinear hyperbolic conservation laws with source term. We propose an approach
that handles the presence of shock discontinuities in a rigorous way without introducing the shock position
as additional state variable. Our analysis is based on the variational calculus for conservation laws developed
in Ulbrich [19, 20] and on a detailed study of the stability properties of the adjoint equation — a transport
equation with discontinuous coefficient — with respect to its coefficients. Stability properties of the adjoint
eqguation played already a fundamental role for the adjoint-based shock-sensitivity analysis in [19], where
we could only sketch the required stability results. The present paper provides a detailed analysis of the
adjoint equation. Moreover, we describe a general procedure to obtain also in the case of shocks a rigorous
adjoint-based gradient formula for tracking-type functionals.

As a model problem we consider the state equation

y+ f(y)e =9t ,z,y,ur), (t,x)e€ (0,T) x R < Qp, y(0,2) = up(x), x€R. Q)
Hereby,f : R — R is a twice continuously differentiable strictly convex flux functien= (ug,u1) €
L>*(R) x L>*(Q7)™, m € N, is the control angy : Q7 x R x R™ is a source term. Detailed regularity
assumptions on andg will be given later.

State equations of the form (1) arise, e.g., in model problems for the control of traffic flow [15] or for the
optimal design of a duct with flow governed by the quasi-1-D Euler equations [3,7,12]. Thus, the scalar inho-
mogeneous conservation law (1) provides a useful basis for a rigorous analysis of optimal control problems
governed by conservation laws.
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It is very well known that even for smoothandg solutions of the inhomogeneous conservation law (1)
develop in general discontinuities (shocks) after a finite time and that entropy solutions provide the physically
relevant weak solution, see, e.g., [11, 13]. We recall ghatL.>°(27) is an entropy solution if for all convex
functionsy : R — R with associated entropy fluxsatisfyingg’ = ' f’ the entropy inequality

W)t + q¥)z < 7' (y)g(t, z,y,u1) InD'(Qr)

holds and if the initial data are assumed in the séinse .oy £ [7 [[y(t, ) — uoll; ;5 dt = 0. We will work
with the following regularity and growth assumption gn

(A1) g € L®(Qp; CVH (R x R™)) N L>(0, T; CL.(R x R x R™)) andyg is Lipschitz continuous w.r.tc.

loc

Moreover, for allM,, > 0 there are’y, Cy > 0 with
g(t,x,y,ur)sgny) < Cy + Caly|, forall (¢,z,y,u1) € Qp x R x [=M,, M,|™.

Then it can be shown, see [18-20] and also [11], that for &l L>°(R) x L*>°(Q7)™ there exists a unique
entropy solutiory € L>°(Qr) N C([0,T7]; L,.(R)) of (1) which we denote by(-; u).

For concreteness, we will consider optimal control problems of the form
mziln J(y(u)) + R(u) subjectto y = y(u) solves (1), 2)
ucUaq

whereld,,, is a set of admissible controlB,is a regularization term anflis a general tracking-type functional
w— J(y) = [ G, p@) da 3)

with 7 € (0,7), an intervall = [A, B, ¢ € C};(R?), and datay; € BV (I). Then the existence of optimal
solutions for (2) is ensured i, is bounded in.>(R) x L>(Q7)™ and compact i} (R) x L (Q7)™
and if the regularization ter® : L1 (R) x L (Qr)™ — R is lower semicontinuous for somec 1, c0),
see [18, 20].

In order to justify the application of gradient-based methods for the solution of the control problem (2)
it is necessary to obtain differentiability results for the functional (3). Hereby, the presence of shocks poses
severe difficulties, since the variation of shock positions enters the variation of (3). This requires a careful
study of shock sensitivities, sensitivity equation, and adjoint equation to obtain differentiability results and
sensitivity- or adjoint-based derivative formulas for the objective functional. In fact, due to the variation of
shocks the control-to-state mappiag- y(t, -; u) is at best differentiable if, e.g., the weak topology of local
measures is used on the state space instead of the gtfpragorm (see [2] and [20] for weak differentiability
results), but this topology is too weak to imply differentiability results for the objective functional (3). In the
recent paper [19], see also [20], we have therefore proposed the concept of shift-differentiability. It is based
on nonlinear shift-variations that take into account the shift of shocks in a specific way. This enabled us to
obtain in [19, 20] differentiability results for tracking-type functiondlsf the form (3). In the present paper
we describe a general procedure to derive an adjoint-based gradient representafigdhdbis rigorous
for solutions with shocks and does nevertheless not require to introduce the shock locations as additional
state variables, which would lead to inconvenient additional adjoint states for the shock locations. However,
the weak differentiability properties aof — y(, -;u) in the case of shocks are not strong enough to apply
the classical adjoint calculus for the functional (3). We note that the linearization of the state equation (1)
has necessarily only measure-solutions with singular part on the shock set carrying the shock sensitivities
information. Therefore, the formal sensitivity equation

5yt + (f,(y)ay)x =Gy 6@/ + Gu, 5“17 (t7 l’) € QTa 53/(07 i’) = 5“0(1:)7 reR. (4)

must be used with care, since it contains the prodiigs)dy of the discontinuous functiorf’(y) and a
measurey, see [1, 9, 20]. On the other hand, the formal adjoint equation is a transport equation with the
discontinuous coefficient'(y) and admits many solutions, see section 3, which requires the characterization
of the "correct” adjoint state.

Our approach omits these difficulties by considering an "averaged” variant of the linearization (4) and
the associated "averaged” adjoint equation that take automatically care of the shock sensitivities. Using the



variational calculus recently developed in Ulbrich [19, 20] and by extending existence and stability results of
Bouchut and James [1] aeversible solution®f linear transport equations with discontinuous coefficients
we will then take the limit in the "averaged” adjoint equation. This yields a rigorous adjoint-based gradient
formula for tracking-type functionals (3) and provides the appropriate interpretation of the adjoint equation
itself. Hereby, we will allow the presence of rarefaction waves (for convexfflggnerated by upward-jumps

in the initial data) which requires some care in the analysis of the adjoint equation.

The results of this paper provide also an analytical framework for the convergence analysis of numerical
schemes for adjoint-computations. We will addresse this topic in a forthcoming paper.

The paper is organized as follows. In section 2 we derive an adjoint-based gradient representation for
objective funtionals (3). Hereby, we will use existence and stability properties for solutions of an "averaged”
adjoint equation that is a transport equation with discontinuous coefficient. In section 3 we give a detailed
analysis of this type of transport equations. By extending previous results of Bouchut and James [1] on
reversiblesolutions of transport equations we provide in particular the existence and stability properties
needed in section 2.

Notations. We use standard notations with the following exceptions: for & set denote byB(S) the space
of bounded functions : S — R equipped with the sup-norm. For opSnwe denote byC*(S) the space
of functions with continuousoundedderivatives up to ordet with norm|v(|cx sy = 2 i51<k HD%HOO’S.
C*(S) is the subspace of all € C*(S) such thatD%v, | 3| < k, admit a continuous extension §5'. For
To < 1 < ...xN < zye1and] = [z, zy41] We denote byPCF(I; 2, ..., zx) the space of piecewise
C*-functions with possible jumps at, . .., 2y, endowed With|oll pet (1.0, ) = SN [Vl e (s, 0500) -

2 Differentiability of the reduced objective functional and adjoint-based gradient formula

2.1 Properties of the control-to-state mapping
We have already mentioned that for controld it there exists a unique entropy solutigre L>°(Q7) N
C([0,T); L}, .(R)). Moreover precisely, we have the following result, see [11, 14,16, 18-20].

Proposition 1. (Existence, stability, and Oleinik’s entropy condition)

Let(A1) hold. Then for all, = (ug, u;) € L®(R) x L= (Q7)™ < U, there exists a unique entropy solution
y =y(-;u) € L>(Qr) of (1). Moreovery € C([0,TY; L},.(R)) after modification on a set of measure zero.
LetM, > 0andU,q C {u € U : |Jugll,, < My, ||u1ll, < My}. Then there aréf, > 0 andL, > 0

such that for all, @ € U,q and allt € [0, T'] the stability estimates hold

M) [y, u)ll < My,
(i) [ly(t, s u) —9(t, ‘§ﬁ)”1,[a,b} < Ly(([uo — ZALO”LIt + Jlur — ﬁ1”1,[0,t]x1t)v
wherea < b are arbitrary andl; < [a — tMy, b+ tMp], Mp = maxy, <y, | /()]
Letin additionf” > my~ > 0 hold and setdoq = {u € Uaa : [[u1l 1o (1,01 (0p)m) < Mu}. Then there
exists a constanmt/ > 0 such that for allu € U,4 and allt € (0, T'] Oleinik’s entropy condition

1

1 — e eMOM—1 4 e=eMt(sup{ Lip™ (ug), M })~! ®)

yﬂﬁ(t7';u) < (

depends on the Lipschitz constantyOf, z, y, u; (¢, z)) w.rt. z,y and g = 0 allows the limitA/ — 0. In
particular, y(¢,-) € BV ,.(R) forall t € (0,7] andy € BV ([o,T] x [-R, R]) forall o, R > 0.

holds in the sense of distributions, wher& m s, Lip™ (ug) = ess sup,.. (M>+ Hereby,M > 0

Since is locally Lipschitz-continuous, it is obvious by (i) and (ii) of Proposition 1 that the mapping
u € Ugq C L},,) — J(y(u)) is Lipschitz-continuous fod given by (3) and bounded,, C L. However,
the mapping: — y(Z, ;u) € L} (R) is in general not differentiable if(¢, -; u) contains a shock, since the
variation of the shock position allows at best differentiability results for, @.g= y(, ;u) € Mo (R) —
weak, whereM,,.(R) — weaK denotes the space of locally bounded Borel measuré® equipped with



the usual weaktopology. We refer to [19] for a simple example that illustrates this fact. On the other hand,
an application of the chain rule to obtain the differentiability of the functiohah (3) would require the
differentiability ofu — y(¢, -;u) € L1 (R) for somep > 1, which does not hold in the case of shocks.
2.2 Differentiability of the objective functional

The previous considerations show that the differentiability of the objective functional can only be obtained
if the sensitivity of shocks and their contribution to the variation of the objective functional are studied in
detail. To this purpose, we have proposed in [19, 20] the concept of shift-differentiability that is based on
a first-order approximation i}, of the actual variatiory(Z, -;u + du) — y(%, -;u) by a nonlinear shift-
variation. The usefulness of shift-differentiability lies in the fact that it implies ttexket-differentiability
of tracking-type functionald in (3). More precisely, let/ be a control space, fix somee U and assume
thaty(, -; u) is piecewiseC'! on a neighborhood of = [A, B] with shocks atd < z; < ... < g < B.
Similar to Fechet-differentiability we call € U — y(%, -;u) € L*(I) shift-differentiableat u if there exists
a bounded linear operator

Dgy(t,;u): dueld— (5y£,5x1, L 0rg)e LM(I) xRE, r>1, (6)
such that with(6y?, 6z) = D,y(Z, - u) - du

ly(t, s u+ o) — y(E, 5u) = 8y’ =20 6] = of|dully)
holds, where thehift-correctionzéx(;i)_,u) (6x) is defined by
(z) def K T
Syt (021, 02 5) (2) =Y [y(F wp; w)] SGMOZx) L1 (ay 2y 46, (1), @ € L.
k=1

Hereby, [y(t, zx; u)] d:‘*y(f, xp—;u) — y(t, xx+; u) denotes the jump across and I (zy, z + dxy) is the
interval enclosed between the minimum and maximumQfc;, + dxy,.

Remark 2. u — y(t, -; u) is for example shift-differentiable if the shock locations¢f, -; u) vary smoothly
and connect smoothly varying states.

Once the shift-differentiability of, € ¢/ — y (¢, -;u) € L*(I) is shown, it follows the Fechet-differentia-
bility of tracking-type functionals/ in (3) as long ag is continuous at, ..., zx, see [19, 20]. In fact, the
Frechet-derivative of (3) is given by

duJ (y(w)) - du = (Y (y(t, - u), ya), 6y{)271 +§:11;y(90k)[y(t_a Tr;u)| oy, (7)

wherey, () is the everywhere defined "mean value” repres;ntativﬁy()j/(f, U, Yqd)
@) 2 [ eyt + (1 -y d) (0= DG ©
Remark 3. Of courseg, (y(%, -;u), yq) in the first term of (7) can be replaced by. O

We have the following result [19, 20].

Theorem 4. (Shift-differentiability of entropy solutions, differentiability of objective functionals)
Let(Al) hold, letf” > m» > 0 and letg be affine linear w.r.ty. Consider for arbitraryz; < ... < zy the
control spacé/ = PC(R; z1, ..., 2x) X L>®(0,T; CL(R)™).

Then forl = [A, B, t € (0,7], the mapping: € U — y(t,;u) € L*(I) with y(-;u) denoting the
entropy solution ofl) is shift-differentiable at any. € ¢/ such thaty(t, -; u) has onI no shock generation
points and finitely many nondegenerate shadks: z; < ... < zx < B that are all no shock interac-
tion points. Moreover, the objective functior@) is Fréchet-differentiable at with derivative(7) if y4 is
continuous atrq, ..., rk.

Proof. The proof can be obtained by a careful application of Dafermos’ theory of generalized characteristics
[5] and can be found in [19, 20]. O



2.3 Adjoint-based gradient representation

We will now use the differentiability result of Theorem 4 to convert (7) to a more convenient adjoint-based
gradient representation. In view of numerical approximations and the wish to handle complicated shock
structures it is hereby highly desirable that the resulting adjoint- or sensitivity-based derivative formulas
do notrequire the introduction of additional adjoint states or sensitivties for the shock position. Rather,
one would like to find derivative formulas that are based on appropriately defined measure-solutions of the
sensitivity equation (4) or the solution of the corresponding adjoint equation, respectively.

We have already observed that the differentiability properties+ef y(-; u) do not allow an application of
the classical adjoint calculus to obtain a gradient representatioh fbinerefore, we proceed more carefully.
Let with the notations of Theorem 4 the mapping— y(¢; -;u) be shift-differentiable at: € ¢/. Now
let 6u € U be arbitrary and set “ u + du, § = y(-;u + ou), y = y(-;u), andAy = § — y. Using that
y, 97 € L®(R)N C([0,T]; L} (R)) are weak solutions of (1) we obtain by subtracting (1)if@andy that

loc
Aye+ (f'(9,9)Ay)e = 9( 9, 11) — g(-y,ur)  InD'(Qr),  Ay(0,-) = dug
with the averaged coefficient
P [ Fo+(-mydr
Sincey, § € C([0,T7; L. (R)) N L>=(R), this yields for any test function satisfying
p € L®(Q;) N C([0,1); L2(R)) N C%Y([o,] x R) forallo € (0,7), supp(p) bounded (9)
the identity
(B(E, ), Ay(E, )y = (B0, ), duo)y + (B + F' (9, y)bo + gy (-, 4, @1)B, Ay)y .
+ (B, 90y, @) — 9(y,w))a g,

where we have used thals by assumption affine linear w.rif. As we will show in section 3, it is possible
to construct for given’ € C%1(R) areversiblesolution) for the "averaged” adjoint equation

Dt + f,(gay)px = _gy('ayaal)ﬁa (t,l’) € Qt_’ ﬁ(ﬂ 3;') = p{(l’), r€eR (11)

that has the regularity (9), see Corollary 15, as well as the following stability property, see Theorem 17: For all
o € (0,t),r € [1,00) and any:-neighborhood-. of the set of rarefaction centefs= {2z € R : [ug(z)] < 0}
we have

(10)

p—p inC([0,2; L"(R)) N C([o, 2] x R) N C([0,] x (R\ F)),
5]l < M,, supdp) uniformly bounded as||dull,, — 0 (12)

with a constanf\/,, > 0. Hereby,p satisfies again (9) and is the reversible solution of

e+ fW)pe = —gy( y,u)p, (L) € Q, p(t,z) = pi(x), =R (13)

Our aim is to take the limit in (10) for regular end dafaThen we lep! converge tay|;, cf. (7), (8).
Clearly, the shift-differentiability result of Theorem 4 holds also for a slightly larger interval [A —
p, B + p]. We thus obtain witl{dy, 6z) = Dsy(t, -;u) - du
TE+oTE

— — — K —
', Ay(t,))or = (0, 0Y")g 1 + Z/ Pl (@) d [y(F, zx; w)] + o(|[p" | o | 0ullyy)- (14)
k=1"Tk

Using (A1), (11), (12) and (14) we deduce from (10) that

K

(p£> 5yt_)2,[_ + Z pf(xk’)[y(t: {L‘k)}(sl'k = (p(07 ')a 6“0)2 + (ggl ('7 Y, U1)p, 5’LL1)27Q{ + O(MPHC;UHL{) (15)
k=1

+0 (10"l s + Sillp’ = p' (k)

|17[(xk.,:ck+6xk.)) :



On the other hand/ in (3) has by Theorem 4 the derivative (7). Comparing (7) and (15), we would like to
choose the discontinuous end data= 1, |/, which requires an extension of the admissible end data in (13).
We will show in section 3, Corollary 15, that for end data

7 o r ¢ is the pointwise everywhere limit of a sequende
p' € Bryp(R) < {pt € B[R) : P P yw d }

(ph,) in COY(R), (pf,) bounded inC(R) N W) (R)
there exists a reversible solution
p € B(Q7) N CYY([0,1]; L},.(R)) N B([0,]; BV 1.(R)) N BV 156 (Q)

loc

of (13) such that for any such sequempé) in C%'(R) and corresponding solution sequeifpg) of (13)
pn, — p boundedly everywhere a0, 7] x R) U ([0,%] x (R\ F)) and inC([0,#]; L}, (R)). (16)

loc
Sincey(t,-),yqs € BV (I), itis easy to see_thaf = z@h € BLip(R) and without restriction we can choose
the approximating sequen¢g/,) such thap!, € C21 (1), pl |12y wp-+o00) = Yy(Th).

Withr > 1from (6) we have(p, — vy, 6y"), 1| < Ik, = Pylill,. 159 ll,.; = OUlph — Pylull,. r5ully),
1/7" +1/r = 1. Since (15) holds fop!, and corresponding,, we thus obtain with (7)

duJ(y(u)) 0u = (p(07 ')a 5”0)2 + (gqj;l ('7 Y, ul)pa 6“1)21525
+0 (1Pl = Pylrll 7+ 1pn = Plloo,m:1 )15l ) + oMy, ll6u]ly).

Now we have|p!, — @z_)y|1||T,j — 0 by the Lebesgue convergence theorem, sapp are uniformly bounded
and thus{|pn — pllc (0,9, r)) — 0 by (16) forn — occ. Therefore, the last two terms asgl|sulf,,) and we
conclude that

dud (y(u)) - 6u = (p(0, ), 5u0)y + (g, (-, y, u)p, dur)y g 17

wherep is the reversible solution of (13) for daph = 1, given by (8). Although we have still to introduce
appropriataeversiblesolutions of (11) and (13) having the stability properties (12) and (16), which will be
done in the next section, we already state the following result.

Theorem 5. Let the assumptions of Theorem 4 hold. Then the gradient respresentatibmaf3) with

respect to the scalar product éf* (R) x L?(€;)™ is given by(17), wherep is the reversible solution ¢f.3)

for datap’ = v, given by(8).

Remark 6. We emphasize that the described approach for the derivation of the adjoint-based gradient rep-

resentation can also be applied to systems of conservation laws. It is rigorous as soen a§, -;u) is
shift-differentiable and the averaged adjoint equation is stable with respect to coefficients and enddiata.

Before we turn to the study of transport equations of the form (11) and (13) in the next section we collect
some properties of the coefficients. For convenience, we set

d(gf_/(yAvy)a Bdéfgy('ayﬂll)v a(gf/(y)7 bdéfgy('ayvul)'
By the assumptions of Theorem 4 (A1) holds apaioes not depend an It is now not difficult to see that

b,be L®(0,T;C* (R)) and b— b in L>(0,T;C(R)) as||dul,, — 0. (18)
Moreover, we have by Proposition 1, (i)—(ii), that
a — a in L} _(Qr) and inL>(Qr)-weak' as||dull,, — 0. (19)

Finally, /” > 0 and Oleinik’s condition (5) yield> > 0 and for anye > 0 a constani\/. > 0 with

. c
Ao(t, ), a0(t, ) < 40 Galt)Imypets Ga(t ) lRype < Me foOr [|oully, <1 (20)
in the sense of distributions, whefé denotes again the-neighborhood off' = {z € R : [ug(z)] < 0}.

Hereby and throughout we use the following convenient convention.
For F' = () we setF. = () forall ¢ > 0. (22)



The second estimate in (20) follows from (5) by using fhe*-boundedness afy, io onR \ F and the
finite propagation speed ¢f y.

It remains to analyze the linear transport equations (11), (13) and to justify the stability properties (12) and
(16). This will be carried out in the next section.

3 The adjoint equation: Linear transport equations with discontinuous coefficient

We consider the backward problem for a transport equation of the form
prtaps =—bp+ec, (tz)€Q = (0,7) xR p(r,) =p, (22)
wherer € (0,7T], b,c € L*(0,T;C%}(R)) anda € L>(r) satisfies the one-sided Lipschitz condition
(OSLC)
az(t,) <alt), acL'(0,T), (23)
or at least the weakened one-sided Lipschitz condition
az(t,-) <a(t), aeL'(o,T), foralloc (0,T).

As observed earlier, the latter case is appropriate if we want to consider the adjoint equation for solutions
with rarefaction waves. The adjoint equation (13) and the averaged adjoint equation (11) are of the form (22).
In view of (20) we use the more flexible assumption

as(t,”) < a(t), a€L'(o,T), forallo € (0,7), au(t,)pp<alt), acL'(0,T) (24)

with a closed sef? C R ande-neighborhoodE.. This contains (23) if we choose = (). Clearly, (20)

implies (24) for all sets? = F<, £ > 0, with the convention (21).

Transport equations (22) have been studied in a different context by several authors under the strong OSLC

(23). Conway [4] shows that under the strong OSLC (23) for Lipschitz continkieusnd anyp” € Lip(R)

there exists a Lipschitz continuous solution to (22) which is not necessarily unique. For the non-uniqueness

of Lipschitz solutions we refer to the simple sgn-example given by Conway [4] afith) = — sgn(z)

andb, c = 0. Similar results were obtained in the context of uniqueness proofs for (1) in [10, 14] and of

error estimates for approximate solutions of (1) in [17]. To ensure uniqueness and stability of solutions,

Bouchut and James introduce in the recent paper [1}fsatisfying the strong OSLC (23),¢c = 0 and

datap™ € Lip(R) specialreversiblesolutions that are unique and stable with respect.t®he reversible

solutions of [1] are not directly extendible to the general dasez 0 but will nevertheless form the basis of

our approach, since they provide a generalized backward flow associated twithwill allow us to define

reversible solutions by using the characteristic equation. The results of this section extend and augment the

existing results in the following directions:

e We work under the weakened OSLC (24). This is essential to handle the adjoint equation (13) in the case
of rarefaction waves.

e We admit discontinuous end data. We have already seen that this is essential to obtain the adjoint-based
gradient representation (17) for tracking type functionals (3).

e We cover the nonhomogeneous case= 0 which is necessary to handle adjoint equations for conserva-
tion laws with source term, whete# 0, as well as adjoint equations for cost functionals with distributed
observation, where # 0.

e We will derive precise regularity results of reversible solutions, also for the case of the weakened OSLC
(24). This yields in particular quite precise regularity results forihegradient (17) of (3).

To motivate our definition of reversible solutions of (22) it is instructive to consider the case of smooth coeffi-

cients and data. i, b, ¢, p” are smooth then it is well known that (22) admits unique classical solutions given

by the characteristic equation. In fact, Igf = {(s, t) € R2:0<t<s< T} and define the characteristic

backward flowX : D, x R — R by requiring that for all¢, z) € Qr

X(t;t,x) =z, %X(s;t,x) =a(s,X(s;t,z)), se[t,T] (25)



Then the solution of (22) is given by the characteristic equation
p(r, X(13t,2)) = p"(X(73¢,2))
d (t,l‘) € QT. (26)
2:P(8 X (s3t,2)) = (=bp + ¢)(s, X (531, 2)), s € (¢,7),
Our definition of reversible solutionsfor the case of discontinuouscan be motivated as follows: Obviously,

the backward flowX satisfies the composition formula
X(s;t,X(t;0,2)) = X(s;0,2) forall 0<o<t<s<T, zeR. 27)
and witho = 0 andz = X (¢; 0, z) we see that (26) is equivalent to

p(1, X(7;0,2)) = p"(X(7;0,2)), z€R

d (28)
P& X(50,2)) = (=bp + c)(t, X(£0,2)), t € (0,7),

Moreover, since by (27) holdX (s; ¢, X (¢;0,2)) = X (s;0,2) and X (s; s,z) = x, we see by (28) that for
anys € (0, 7] the functionX (s; -, -) is the unique classical solution to

Xi(s;+) +aXz(s;:) =0, (t,z) € (0,s) x R, X(s;s,2) =z, v €R. (29)

Thus, X (s; -, -) solves a homogeneous transport equation with coeffigiant can be defined as a reversible
solution in the sense of Bouchut and James [1] also for the case, wiefe (Qr) satisfies the OSLC (23).
This yields a definition of the generalized backward fl&what is stable with respect to perturbations — e.qg.,
smoothing — ofz and is thus consistent with the smooth case (it turns outXHatt, =) is nothing else but
the Filippov-solution of the ODE (25)). This justifies to use (28) for the definitiop afid the stability ofX
will ensure the stability op with respect to the coefficient
3.1 Reversible solutions

We recall several results from Bouchut and James [1] that are the starting point of our approach. Denote
by £;, the space of Lipschitz-continuous solutions to

pt+ap: =0, (t,7)€Q; (30)
We have seen that solutions with prescribed end gatare in general not unique. To obtain uniqueness
Bouchut and James define in [1] for the homogeneousicase 0 reversible solutions as follows:
Definition 7. (Reversible solution fob, ¢ = 0, [1])
p € Ly, is calledreversible solutiorof (30) if there existp;, p2 € L, such that(p;), > 0, (p2), > 0 and
P =p1—p2 O
We have the following result of [1].
Theorem 8. (Existence and uniqueness of reversible solutiorbfor= 0, [1])

Leta € L (Qy) satisfy the OSLE23). Then for any™ € Lip(R) there exists a unique reversible solution
p e Cr1(Q) of (30)with p(7, -) = p”. Moreover,

loc

1P )Mloo,r < MNP loo,sr P2t o s < el: NP2l so,s
With I = (1, 22), J = (21 — |lal| (T — 1), 22 + [Ja]| o (T — 1)).
This convenient characterization of reversible solutions is not extendible to the case or ¢ # 0.

However, we will use the following generalized backward flow dointroduced in [1] together with the
characteristic equation (28):

Definition 9. (Generalized backward flow)

Let D, = {(s,t) e R? : 0 <t <s<T}andleta € L>=(Qr) satisfy the OSLC (23). Then the generalized
backward flowX € Lip(Dy x R) associated witlu is defined by the requirement that(s; -, -) is for any

s € (0,71 the unique reversible solution to

Xi(s;+, ) +aXy(s;+,-) =0, (t,z) € (0,s) xR, X(s;s,2) =z, x€R.



Moreover, we seX (0;0, z) = x. O

One can show [1] thaX (s; ¢, x) satisfies

T s
1l 5 S Mlalloos 1Kl e < lallwedo @, 1Xu(sit, )]l < el @ forall (s,¢) € D, (31)

Moreover, X, > 0, z — X (s;t, z) is surjective for alls, t) € D, and
Xoz(s;t,2) < a(s)Xp(s;t,z) fora.a.s e (0,7) (32)
on lo)b x R, see [1]. Thus, for arbitrary; < zo and0 <t < o < s < T we obtain
0 < X(s;t,z0) — X(s;t,21) < X(o3t,29) — X(o3t,21) + /S a(r)(X(rit, z9) — X(r;t, 21)) dr,
and hence the Gronwall lemma yields ’
0 < X(s;t,22) — X(s;t,21) < (X(03t,22) — X (031, 21))ef:a forall t<o<s<T. (33)
Moreover, it is shown in [1] that the composition formula (27) holds and that fofany € Qr
Xs(s;t,x) € [a(s, X (s;t,2)+),a(s, X(s;t,z)—)] fora.a.s e (0,T). (34)

We recall that the one-sided Lipschitz condition (23) or (24) implies dfat) € BV ,.(R) for a.a.t and
thus the left- and right-sided limits in (34) exist.

Remark 10. (34) shows thafX (-; ¢, x) is a solution of (25) in the sense of Filippov [6]. On the other hand,
it is shown in [6] that the strong OSLC (23) implies existence and unigqueness of Filippov-solutions for (25).
Thus, the generalized backward floW of Definition 9 coincides with the unique flow obtained by solving
(25) in the sense of Filippov.

In the case of the adjoint equation (22) we have: f’(y) with the solutiony of (1). Thus,X (-;¢,x) is
nothing else but the generalized forward characteristic thréugh in the sense of Dafermos [5]. O

For our analysis the following stability result of [1] for the generalized backward Xowvhich extends a
classical stability result of Filippov-solutions [6], will be important.

Theorem 11. (Stability of the generalized backward flow, [1, Thm. 4.1.15])
Let(a,) be a bounded sequencelii®(2r) with a,, — a in L>°(Q7)-weak and let for a bounded sequence
(a) in L1(0,T) anda € L'(0,T) the OSLCs hold

(an)z(t, ) < an(t), ag(t,") <a(t) foraa.te (0,7).

Denote byX,, and X the generalized backward flows associated withand a according to Definition 9,
respectively. Then it hold&,, — X in C(D; x [-R, R]) forall R > 0.

Finally, itis shown in [1] that fob, ¢ = 0 the reversible solution of (22) is given byt, x) = p™ (X (7;t, x))
and is thus the broad solution according to (28) defined along the generalized characteristics. This motivates
our following definition of reversible solutions for (22) in the general daseZ 0.

Definition 12. (Reversible solution)
Denote byB(RR) the Banach space of bounded functions equipped witkithenorm and let

pg € BLyp(R) def {w € B[R) w is the pointwise everywhere limit of a sequenc<}

(wy) in C%L(R), (w,) bounded inC(R) N W (R)

Leta € L®(Q7), ax(t,-) < a(t),a € L'(0,T) andb,c € L>(0,T; C*(R)). Then a reversible solution
of (22) is defined as follows. For anye R definep(t, X (¢; 0, z)) as solution of

p(1, X(7;0,2)) =p" (X (130, 2)), %p(t, X (t;0,2)) = (=bp +¢)(t, X (¢;0,2)) fora.a.t € (0,7). (35)

If merelya € L'(o,T) for all o > 0 holds then we defing first on the domaings, 7) x R and then o2,
by exhaustion. O



In order to handle the weakened OSLC (24) the following observation is important.

Remark 13. The composition formula (27) yields the identil(¢; s, z) = X (¢;0, z) with z = X (s;0, 2)
for s <t < T. Therefore, as in the classical case (35) implies phatisfies for alD < s < 7 andz € R

p(r, X(7;8,2)) =p" (X(7;8,7)), p(t, X (t;s,2)) = (=bp + ¢)(t, X (t;5,7)) fora.at € [s,7]. (36)

d
dt
Thus, for0 < ¢ < s < 7 the reversible solution of (22) ofr,7) x R is an extension of the reversible
solution of (22) on(s, 7) x R. This justifies the construction gfby exhaustion in the case of the weakened
OSLC (24). Moreover, we see from (31) thdk, «) depends only on the values @fb andc in the triangle

{(t,2) € Qe s tes,7],2 € [ = lall (8 = 5), 2 + [lal| o (T = 5)]}- O

3.2 Existence and uniqueness of reversible solutions
We are now in the position to show the following existence and uniqueness result.

Theorem 14. (Existence, uniqueness and regularity of reversible solutions under strong OSLC)

Leta € L () satisfy the OSLE23). Letb, c € L>(0, T; C%'(R)). Then the following holds:

Forall p™ € C%1(R) there exists a unique reversible solutipnf (22). Moreoverp € C%1(Q¢) andp solves
(22) almost everywhere oft-. Furthermore,||p||,cco.1 ey has independently of a bound depending on
10l oo (0. 7,001 () €l Loe 0,100 () 1P 0.1y llalloor @Nd ||y Finally, for all ¢ € [0, 7], 21 < 22 and
0 <s<§<7with

I=[z,2], J=la-llal(m—1), 22+ llal(r=1)], II=Is38xI, J =[t7]xJ

the following estimates hold:

T b .
el gy < U7 s + el Lo rmeny e OB, (37)
b
P2 @)1y 7 < (P31 + 1bally g [Plloo st llexlly s eIt wmzon, (38)
[pelly I35 = < (8=s)(l[bw - CHLoo(s,g;Ll( + HaHools”PzHLoo sé-Ll(])))' (39)

In particular, one has with constants, M depending oflp” [y 1.1y |alloo 0,71 x s+ 10l Lo 0,75w11 () @NC
llell oo 0, 7sw1.1(.7y)» PUL NOt depending oa

IPllwraco,mxny T 1Pl B0y < Ms [[p(8) = p(s)lli <C(5—s). (40)

Before we prove this theorem, we state the following corollary that gives an existence and uniqueness
result under the weakened OSLC (24) and covers also the case of discontinuous end data.

Corollary 15. (Existence and uniqueness under weakened OSLC and for discontinuous end data)
Let the assumptions of Theord@hhold with the relaxation that only the weakened OSRQ) s satisfied for
a closed sefl C R. Then the following holds:

(i) Foranyp™ € C%(R) there exists a unique reversible solutipof (22). Moreover, for allo € (0, 7)
ande > 0 we have with the conventiq@l)

p € B(Q,)NC% ([0, 7] x R)NC* ([0, 7] x (R\ E.)) N C%L([0, 7]; L},.(R)) N B([0,7]); BV 10e(R)),

(37)H40) hold for all ¢ € (0, 7] andp satisfieg36) for all s € (0, 7). Finally, [[pllco.1 (o -x &\ £.)) has
independently of a bound depending o (bl ;.- (o 7.co.1 (r)) 1€l Lo (0,700 (R))» 1P lc0.1 Ry Nl oo
and||all,.

(i) Forenddatgp™ € By, (R) there exists a unique reversible solutipre B(€2,) according to Definition
12. Moreoverp satisfies the pointwise bour(@7) and

p e B(Q)NCY([0,7]; L. (R) N B([0,7]; BV 10(R)) N BV 1. (Q).

Let (p;) be any sequence i6%!(R) that is bounded irC(R) N W, (R) and converges pointwise
everywhere t@™. Then the corresponding reversible solutignsof (22) according to(ii) satisfy

pn — p boundedly everywhere @0, 7] x R) U ([0, 7] x (R \ E)) and inC([0, 7]; L. (R)).
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We prove now Theorem 14 and subsequently Corollary 15.
Proof of Theorem 14. We show first thap is well defined. Let(¢t,z) € . be arbitrary. Since —
X (t;0, 2) is surjective, there is € R with x = X(¢;0, z). Now (35) defines the values pfon the curve
(s,X(s;0,2)),t < s <r.If zis not unique then we get for alwith x = X (¢; 0, 2) by (33) thatX (s;0, 2) =
X (s;0,2) forall s € [¢,T]. Thus, the definition does not depend on the choice of

By (31) we see thaX (s;0,z) € J forallxz € I ands € [t,T]. Thus, (35) gives for alk with x =
X(t;0,z) € I ands € [t, 7]

p(s, X (50, 2))| < P" Il gy + el rerimia) +/ 16C) | )l (r; X (730, 2)) | dr

Now the Gronwall lemma yields (37). Hence, there exists a unigae3 (2, ) satisfying (35).
We show thap is Lipschitz-continuous. Let; < z, be arbitrary. Then

Ap(t) = p(t, X (£:0, 22)) — p(t, X (¢;0,21))
satisfiesAp(7) = p™ (X (730, z2)) — p" (X (730, 21)) and

LAp(#) = oft, X (10, 20)) — e(t, X (10, 21)) — b(t, X (£:0, 20)) Ap(t)

dt
— (b(t, X (0, 22)) — b(t, X(£; 0, 21)))p(t, X (£; 0, 21)).
Thus, setting (¢t) = [X (¢;0, z1), X (¢; 0, 22)] we get for allt € [0, 7]

AP0 < [ 16| AP ds + (X (7:0.22)) = (X (7:0,20))|
[ 100l s o5, X550, 22)) = b, X (530, 20)] s (41)
el X (530,22)) = s X (530,20) | .
Hence, we have by (33) with X (£) & X (¢; 0, z3) — X (£; 0, 1)

D) < (1o + 1801510 ricom [Pl ey + el a0 icony) € “AX O+ [ 10(3) pac |Bp(5)| ds

and by Gronwall for alt € [0, 7]

t
AP0 < AX O (1P o + 181l 1 0.ricon) P (e, + lellaorcoy)e s omsan®loe,
This yields a uniform bound fofp, || . Finally, letz € R andt, € [0, 7], t < £, be arbitrary then by (31)
Ip(t, X(£;0,2)) — p(t, X (t;0,2))| < [p(t, X (£ 0, 2)) — p(t, X(£;0, 2))]
+ [p(t, X(£;0,2)) — p(t, X(£; 0, 2))]| (42)
< (Ibllp PN B,y + Il B,y + llellsllpell po,) ) E = 2.
Hencep € C%1(€,) and one easily checks thiat]| co.1 1) is bounded by a constant only depending on the
asserted quantities.
Finally, p solves (22) a.e. ify. In fact, for a.a(t,x) = (¢, X (¢; 0, 2)) in Qp the Lipschitz-functiorp is
differentiable. Moreover, since(t,-) € BVj,.(R) for a.a.t by the one-sided Lipschitz condition, we have
a(t,z—) = a(t,z+) fora.a.(t, z) € Qr and thus from (34) that
Xs(t;0,2) = a(t, X (t;0,2))
fora.a.(t,z) = (¢, X (¢;0, 2)). Now the chain rule yields with (35) that (22) is satisfied for all thgse).

Since forw € C*'(I(t)) holds||w]| () = llwell; 1), S€€ for example [8], we find for arbitragy> 0
pointszg < z1 ... < zx in I(t) such that

=

1P ()[4 () Z (t,z;) —p(t,wi—1)| +e.
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Summing (41) for the pairs;_1, x; instead ofzq, 2o yields thus forald <t < 7
Ipz(O)lly 1y < € +/t 16(5) o, 1(5) 1Pz () |1, 1(s) ds + [Pz ll1 1)

+/t (IP(3) oo, r(s) 102 () [1,15) + lew($)l1,1¢5)) ds-

Sincee > 0 was arbitrary, the same holds for= 0. With I = I(t) andJ = [X(t;0,21) — |la| (7 —
t), X(t;0,22) + ||al| . (T — t)] holdsI(s) C J fort < s < 7 by (31). Now (38) follows by Gronwall.
Sincep solves (22) a.e. if,, we get for arbitrary) < s < § < 7 andl? = [s, 5] x I

1Pell1,rs < 102 = clly 15 + lalloo gz llPally rs < (8 = $)([bp = cll Lo s 5.0t (1)) T 11@lloo, 13 11Pe | oo (5,501 (1)) )-
This is exactly (39). Now (40) follows directly from (37)—(39). Hereby, we usetiat (J) — C(J). O

Proof of Corollary 15. (i): The assertions follow by applying Theorem 14(en7) xR and lettingr — 0+
In fact, for anyo € (0,7), the reversible solution is given by (36) fer= o and satisfies (37)—(40) on
(o, 7) x R. Moreover,p satisfies (36) by Remark 13 also for alE [0, 7). Therefore, the reversible solution
obtained for some > 0 is an extension for all reversible solutions corresponding to largehich justifies
the definition ofp by exhaustion of2...

Now (40) yieldsp € C%((0, 7]; Li,(R)) N B((0,7]; W2 (R)), and we may therefore extepdiniquely
to C%1([0,7]; L},.(R)). Clearly, p satisfies (37)—(40) for € (0,7]. Sincep(t,) is for t > 0 by (40)
uniformly bounded inW,;!(R) < BV, (R) andp(t,-) — p(0,-) in L} _(R) for ¢ — 0+, we ob-
tain p(0,-) € BV ,.(R) by the lower semicontinuity of - || ;- under L!-convergence [8]. Together with
p € B((0,7]; W2} (R)) we conclude thap € B([0,7]; BV jo.(R)).

Now let E be a closed set such that(z, -)|r\ g < @(t) with somea € L'(0,T), cf. (24). LetE. be an
arbitrarye-neighborhood o and seti = a(1 — ¢) with the function

(p(t, x) = 1[075/(1_,_4“(1”00)] (t) max{(), 1—-4 diSt(.Y}, E5/4)/5}- (43)
Theny is Lipschitz with respect ta: and suppe C [0,&/(1 + 4[al| )] x E./». Sincea satisfies also the
weak OSLC (24), we have obviously, < & for somea € L!(0,T). Denote byp the reversible solution
for a replaced byi. Thenp € C%(Q<") by Theorem 14. Now the values pfig | (\ £.) @andp[o xR\ 5.)
depend by Remark 13 only on the valueszainda outside the support af and therex coincides witha.
Hence, we have|o - g\ £.) = Bljo,-]x(r\£.) Which yieldsp € C%([0,7] x (R \ E.)). The bound for the
norm now follows from Theorem 14. IF = () then the strong OSLC (23) holds and we can clearly choose
E = E. = () by Theorem 14.

(ii): Exactly as at the beginning of the proof of Theorem 14 we obtain that the reversible solution according
to Definition 12 exists, is unique and satisfies the bound (37) fe®. In particular, we have € B(€2,).

Now let(p,) be a sequence i@%!(R), bounded irC(R) mWi;cl(R), that converges pointwise everywhere
to p” and denote the corresponding reversible solutions of (22),byhen(p,,) is bounded inB(Q2,) by
(37). Nowp,, — p satisfies (36) withe = 0 andp], — p” instead ofp™ for all s > 0. Applying the Gronwall
lemma yields for all¢, z) € Q. and withz such thatt = X (¢; s, z) similarly as in (37) for alt € (s, 7]

|(n = P)(t:2)] < (27, = P)(X (735, 2)) el POA =D oot (770,

This shows thap, — p everywhere on(0, 7] x R, and boundedly everywhere, singg,) is bounded in
B((0,7] x R) by (37).

Moreover,(p,,) is bounded inC%([0, 7]; LL . (R)) N B([0,7]; BV 1.(R)) N W1 (<) by (40) in Theo-
rem 14 and the arguments in the proof of (i), sifpg) is bounded inWllo’c1 (R). Now p,, — p boundedly
everywhere or{0, 7] x R implies thatp,,(t,-) — p(t,-) in L}, (R) boundedly for altt € (0, 7]. Therefore,
we have alsp € C%([0,7]; L}, .(R)). Moreover, we conclude by an Arzela-Ascoli argument that- p
in C([0,7]; L},.(R)): we havep,(t,-) — p(t,-) in L}, (R) for all ¢ in a dense countable subset[0f7]
and get now uniform convergence by using the uniform Lipschitz-continuity. In particular, the boundedness
of (pu) in B(0,7); BV 1oe(R)) N W (Q2) yields p € B([0,7); BV 1e(R)) N BV (<) by the lower
semicontinuity of theBV-norm undet!-convergence.
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Now let E be a closed set such that(t,-)|r\ g < @(t) with somea e L'(0,T), cf. (24). IfE = 0
then the strong OSLC (23) holds and thus (36) is satisfied alse fer0 by Theorem 14. Hencey,, — p
converges even boundedly everywherd@rm] x R.

If E # ( we have to show that,(0,-) — p(0,-) boundedly everywhere on the open Bet E. We
know by (i) thatp,, € C([0,7] x (R\ E)) and(p,,) is bounded inB((0, 7] x R). Thus,(p,,) is bounded in
B([0,7] x (R\ E)) and it remains to show that,(0,z) — p(0,z) for all z € R\ E. Let any suchz be
given. Then forz: > 0 small enough we have ¢ E.. With ¢ as in (43) we set agai@a = a(1 — ¢) and
denote byp,, p the reversible solutions far instead ofa. As in the proof of (i)a satisfies the strong OSLC
a, < & € L'(0,T) and therefores, — p boundedly everywhere 0o, 7] x R as we have already shown.
But as in the proof of (i) we conclude with Remark 13 that0, ) = p,, (0, z) andp(0,z) = p(0,z). O

3.3 Stability of reversible solutions
We study now the stability properties of reversible solutions with respect to the coefficiéntsand the
end data. Our aim is to prove in particular the stability property (12) if the coefficients converge in the sense
(18), (19). The following stability result extends a similar result of [1] for the dase ¢ = 0 to the case
b, ¢ # 0. A further extension to the weakened OSLC (24) will follow in Theorem 17.

Theorem 16. (Stability of reversible solutions under strong OSLC)
Let the following assumptions hold:

(@) (an) is a bounded sequence Irt° (Q7) with a,, — a in L>=(Qr)-weak and for a bounded sequence
(o) in L1(0,T) anda € LY(0,T) the OSLCs hold
(an)z(t,) < an(t), ag(t,-) <a(t) fora.a.te (0,7),
(b) (bn), (c,) are sequences iB>°(0,T; C%1(R)), bounded inL'(0, T'; C(R)), with b,, — b, ¢, — cin
LY(0,T; Cie (R)), whereb, c € L°°(0, T; C%1(R)),
(c) (pr) is a sequence in%1(R), bounded inC(R), with p7 — p™ in C,.(R), wherep™ € CO1(R).
Then the reversible solutions, of

(pn)t + an(pn)a: = _bnpn + ¢p, pn(Ta ) = p:z (44)

satisfy
pn—p InC([0,7] x [-R, R])
for all R > 0, wherep is the reversible solution @R2).

Proof. Denote byX and.X, the backward flows according to Definition 9 feranda,,, respectively. By
Theorem 11 it holds\,, — X in C'(Dy x [—R, R]) for any R > 0. By the definition of reversible solutions
we have for allz € R

(7, Xn (730, 2)) = pr (X (730, 2)), %pn(t,Xn(t; 0,2)) = (=bppn + cn)(t, Xn(t;0, 2)).

For the reversible solutiop of (22) holds (35). Fix somé& > 0 and consider an arbitrary, z) € [0,7] x
[—R, R]. There exist, z,, € R with x = X (¢;0,2) = X,,(¢;0, z,) and we haveX (s;0, z), X,,(s;0, z,,) €
[R— M,7, R+ M,7] ¥ J according to (31) for alk  [t, 7] with an upper bound/, for llan | and|al| .
SinceX (s;t,x) = X(s;0, 2) and X, (s; t, ) = X, (s;0, z,) by (27), we have for a.a. € (¢, 7)

d
pn(Ta Xn(T; t, .75)) = p;(Xn(7—§ t, 513))7 %pn(sv Xn(s; t, .T)) = (_bnpn + Cn)(S, Xn(s; t, I))u
d
p(1, X (m3t,2)) = p(X(7:t,2)), (s, X(s;8,2)) = (=bp + ) (s, X (531, 2)).
Therefore, the differencAp,,(s) d:‘afp(s, X(s;t,z)) — pn(s, Xn(s;t, x)) satisfies

[Apn(7)] = [p"(X (731, 2)) — pr(Xn(7:t,2)[ < 07 = Prllewy + 1P lco s IX — Xullop, <) (45)
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and for a.as € (t, 1)

iApn(s) = (bn(s, Xn(s;t,x)) — b(s, X (s;t,2)))p(s, X(s;t,x))

- —bp(s, Xn(s;t,2))App(s) + c(s, X(s;t,x)) — cn(s, Xn(s;t, x)).
Thus, we get with/, < [0, 7] x J
[Apn ()] < 1Pl s,y (1bn = Bll L1 0,000y + b2l 1 0miz0e (1K = Xnllopyxny) + llen = ell o ric)
+ llcall L1 (0.r:200 () IX = Xnll o, <0y + AP (T)] + /ST [1bn (7, )l .y [ Apn ()| dr

St [ 10a o) | Apa(r) dr

Obviously, this inequality holds for afk, z) € [0, 7] x [—R, R] andn,, does not depend o, x) € [0, 7] x
[—R, R]. Now the Gronwall lemma yields

Ip(t, @) — pa(t, )| = |Apn ()] < el Prllzt 000

for all (t,z) € [0,7] x [-R, R]. By assumptions (a)—(c), (37), and (45) we see tal] 1o .c(s)) IS
uniformly bounded and,, — 0. This shows thalim,, . ||p — p"HC([O,T]x[fR,R]) = 0. O

We have already observed that only the weakened OSLC (24) is satisfied if the initial data have an up-jump
(which generates a rarefaction wave), cf. (20). In this case we have the following variant of Theorem 16.

Theorem 17. (Stability of reversible solutions under weakened OSLC)
Let the assumption®)—(c)of Theorem 16 hold with the following modifications:

(@) In (a)the sequencé,,) is bounded inL! (o, T') anda € L' (o, T) merely for all fixeds > 0.
(b) In (b) the sequence®,), (c,,) are in addition bounded i€ (0, T; W, (R)).
(c) In (c) the sequencépy,) is in addition bounded iV, (R).
Then the reversible solutions, of (44) are uniformly bounded iB(2,;) N Wi((0,7) x (=R, R)) N
c%l/7([0,7]; L"(—R, R)) for all € [1,00) and R > 0. Moreover,
pn—p INC([o,7] x [-R,R])NC([0,7]; L"(—R, R))
forall o > 0, R > 0 andr € [1,00), wherep is the reversible solution ¢2).
If in addition E is a closed set such tha,(, ) |p\ g < &(t), & € L'(0,T), (an)2(t, ) Ir\g < dn(t), (an)
bounded inL(0,T), then one has moreover
pn—p 0 C(0,7] x (=R R\ E)
for anye-neighborhood. of £ and all R > 0.

Proof. The reversible solutions,, andp are by definition reversible solutions on any dompinr| x R,

o > 0, see Remark 13, and there the strong OSLC condition of Theorem 16, (a) holds. Therefore, Theorem
16 is applicable on these domains and yields that> p in C([o, 7] x [-R, R]) for all R > 0. The uniform
boundedness qof, in B(Q,) N WH1((0,7) x (=R, R)) N C%([0,7]; L'(—R, R)) is a direct consequence

of Corollary 15 and the boundedness assumptions,0n,, andp’. Setting/ = [—R, R] and using the
interpolation inequality| - [|, ; < | - ||i/}“|| . ||1_1/T for r € [1, 00), we conclude thafp,,) is also bounded in

oo,l

CcOYr([0,7]; L (—R, R)). Now for o > 0 and allt € [0, o] we have withl = [—R, R]

1pn(t) = 211 < Ipnlo) = (@)1 1 + (0 = O)llPn = Pllcor om0 () < 2Rllpn(o) —p(0)llc () + Co
whereC is a uniform bound fof|p,, — p|| 0.1 (jo ;1.1 (1))- This shows that

[pn — pHC([O,T];Ll(fR,R)) < 2R||pn — pHC([a,T}x[fR,R]) +Co.

We have already shown that the first term on the right-hand side converges to zero for any$ixed hus,
given any= > 0, the right hand side is. ¢ by choosingr = ¢/(2C) for all n sufficiently large. This shows
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thatp, — pin C([0,7]; L'(—R, R)). By interpolation with the unifornL.>°-bound forp,, andp, the same
holds inC([0, 7]; L"(—R, R)) for all r € [1, 00).

Now let £ be a closed set such that(t,-)|r\g < @(t), @ € LY0,T), (an)e(t,-)|r\e < dn(t), (an)
bounded inL'(0, T"). Moreover, let > 0 be arbitrary andz. the s-neighborhood oft. By (a) we find/,
with ||ay, ||, l|all, < M,. As used previously, we sét= a(1 — ¢) anda,, = a,(1 — ¢) with the function

o(t, ) = 1o,/ (1440, (t) max{0, 1 — 4 dist(z, E,/4)/e}.
Using in addition the bounds, < « and(a,), < a,, there exist obviouslyr € L'(0,T) and a bounded
sequencéd,,) in L1(0,T) with a, < & and(a,), < &,. Now Theorem 16 yieldg, — p in C([0,7] x
[—R, R]) forall R > 0. Moreover, Remark 13 yields as before thallo -« (—r,r)\ £.) = Pnl[0,7]x (|- R,R]\E-)
andplio - x(~r,R)\E-) = Pljo,]x(-R,R]\E.), Since the propagation speed of the backward flow is bounded
by M,. Hence, we have shown that — p in C([0,7] x ([—R, R] \ E:)). This completes the proof [
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